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Inertial particle collisions in turbulent synthetic flows: Quantifying the sling effect
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Turbulent motion increases very significantly the collision rate between particles in dilute suspensions. In the
case of heavy inertial particles, the collision rate enhancement results both from the intermittent concentration
in the flow, and also from the large relative velocity between colliding particles. The latter effect is a conse-
quence of the ejection of particles out of curved streamlines, denoted here as the “sling effect.” Here, we
quantitatively study the collision rate between heavy particles in the presence of gravity, with the simplified
synthetic model of turbulent flow known as kinematic simulation. Monitoring the velocity of colliding particles
and comparing it with the local velocity gradient of the flow of particles allowed us to identify the collision
induced by the sling effect and to evaluate their contribution to the total collision rate. Our numerical results
are then systematically compared with the estimates based on the properties of particle trajectories in the flow
recently proposed by Falkovich and Pumir [G. Falkovich and A. Pumir, J. Atmos. Sci. 64, 4497 (2007)]. At
moderate values of the Stokes numbers (St=<1), we demonstrate that the resulting parametrization describes
quantitatively correctly the collision rate, and that the sling effect can be responsible for up to ~50% of the

total collision rate.
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I. INTRODUCTION

Turbulent fluid motion notoriously plays a strong role in
enhancing the collision rate between particles [1] and, in
turn, the rate of coalescence in a variety of natural and engi-
neering situations. This phenomenon has been identified to
be important, among others, for the transport of dust and
pollutants in air, of sediments in rivers, and for the growth of
liquid vapor droplets in warm clouds, ultimately leading to
the formation of raindrops [2]. The present work is motivated
to a large extent by the latter effect. In warm clouds, tiny
droplets of size ~1 wum are nucleated by aerosols. Colli-
sions induced by turbulence are expected to be particularly
important for determining the rate of coalescence of droplets
of size ~10-20 um, at a stage where the droplet size dis-
tribution is quite narrow. In clouds, the size of the droplets is
much smaller than the Kolmogorov length, i.e., the smallest
length scale of turbulence: 7~ 1-10 mm.

The aim of this work is to study the enhancement of the
collision rate of a system of heavy particles of small size a
(a<<m) by turbulence. In general, the collision rate per unit
of volume K(a) between particles of equal size, of diameter
a, and of mean density n, can be written as [3,4]

K(a) = mga*(|w,|)g(a), (1)

where w,=w-7 is the radial relative velocity between two
particles and g(a) is the radial distribution function at con-
tact.

Particles with negligible inertia and in the absence of
gravity exactly follow the fluid and remain uniformly distrib-
uted, so that g(a)=1. In this case, the collision rate is en-
hanced by the strong velocity gradients in the flow. The re-
sulting expression for the collision rate has been derived in
the seminal work of Saffman and Turner [1],
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where 7 is the Kolmogorov time. The collision rate can also
be estimated analytically in the case of particles with so
much inertia that they do not really follow the turbulent flow,
but rather move with a random essentially Gaussian turbu-
lent velocity. In this case, the collision rate can be estimated
from gas kinetic theory [5],

1 61 1/2
KKTz _n(Z)aZ(_) <U2>1/2, (3)

where v is the velocity of the particles. In the two cases
above, the collision rate is completely determined by a single
quantity characterizing the flow, the Kolmogorov time [Eq.
(2)] or the kinetic energy of the particles [Eq. (3)].

Such a simple parametrization does not exist in the gen-
eral case of particles with finite inertia. The enhancement of
the collision rate, observed in many direct numerical studies
(DNSs), can be potentially attributed to either of the two
terms on the right-hand side of Eq. (1): g(a) or {|w,|). The
preferential concentration phenomenon, whereby inertial par-
ticles distribute very inhomogeneously in the flow, effec-
tively leads to clustering of particles, and hence to values of
g(a) larger than 1. The enhancement of the relative velocity,
(lw,|), comes from inertial effects. The effective velocity gra-
dient tensor of the particle velocity field can be significantly
stronger than the underlying velocity gradient of the fluid. In
particular, because particles do not follow exactly the fluid,
particles originating from different regions in the flow may
catch up with one another, thus leading to an infinitely large
particle velocity gradient. This effect, introduced and named
in [6], can be explained in terms of the formation of caustics
of particle trajectories [7] in the flow. It raises the possibility
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of collision of jets of particles with velocity difference of
order (u?)"?, thus leading to a significant increase in the
relative velocity (w,).

In a recent attempt to quantify the importance of the two
effects, Falkovich and Pumir [8] proposed to decompose the
collision rate as a sum of two contributions. The “continu-
ous” contribution accounts for the collisions between par-
ticles whose velocity difference can be described quantita-
tively by the (smooth) gradient of the particle velocities, and
a “sling” contribution, due to the collisions between particles
originating from very different regions of the flow, with a
velocity difference of order 1. This decomposition can be
formulated in terms of properties of Lagrangian trajectories
of particles in the flow, thus leading to the indirect Lagrang-
ian method (ILM), originally proposed in [8]. Indeed, the
predictions of this approach seem to agree reasonably well
with results obtained by directly counting the number of col-
lisions in a flow, at least under conditions where the contri-
bution of the caustics is weak compared to the continuous
term [8]. The Lagrangian approach certainly captures the en-
hancement of the collision rate observed in DNS. Whether
the parametrization proposed in [8] correctly captures the
enhancement due to the sling term has however not been
properly demonstrated.

It should be stressed that the sling effect is intrinsically
difficult to describe because it corresponds to a failure of any
hydrodynamic description of the motion of particles, induced
by the multivalued nature of the particle velocity field. A
proper parametrization of the various effects responsible for
the collision rate, a problem both of fundamental importance
and potentially very significant for a number of applications,
is the main objective of this work. To this end, we carried out
a direct comparison between the proposed way of param-
etrizing the collision rate [8] and simulations directly count-
ing the total number of collisions. One of the major difficul-
ties of this approach is that the time needed to simulate a
Navier-Stokes flow at a reasonable Reynolds number in the
presence of many particles can be prohibitively large. In ad-
dition, in its simplest form, the problem of determining the
collision rate of inertial particles in a turbulent flow, in the
presence of gravity, involves three dimensionless numbers.
The Reynolds number Re parametrizes the intensity of tur-
bulence or, equivalently, the ratio of scales in the flow Re
=(L/5)*3, where L(7) is the integral (Kolmogorov) scale.
The Stokes number St defines the ratio between the response
time of the particles, 7p, and the Kolmogorov time scale 7
=177/v (where v is the fluid viscosity) characterizing the
smallest structures of the flow. The Stokes number is simply
related to the ratio between the diameter a of the particle and
the Kolmogorov length by the relation 7/a=V¥ St™'2, with
\Ifz[ﬁ(pp/pf)]”z, where pp (p;) is the density of the par-
ticles (fluid). We will assume here that the ratio pp/ps
=1000 (¥=7.5), corresponding to water droplets in air.
Lastly, the Froude number Fr=uy/g7p compares the Kol-
mogorov velocity, ug=7/ g, and the velocity of sedimenta-
tion g7p. The problem is therefore characterized by three
dimensionless parameters. A direct calculation of collisions
in a realistic Navier-Stokes flow, with a systematic variation
of the three parameters, would be prohibitively expensive.
For this reason, we have chosen to carry out numerical simu-
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lations of particles using a simplified flow model, namely,
the kinematic simulation (KS). Although this method has
been shown to miss certain aspects of the problem of particle
dispersions, it still captures several important features; it has
the advantage of simplicity and leads to an easy and efficient
numerical implementation. KS thus provides a very good
tool to test our understanding of transport in turbulent flows.
We restrict ourselves to “ghost particles,” corresponding to
an idealized system where colliding particles pass through
each other. This approach is very often used in calculations
of droplet coalescence [4,9]. The ghost particle approxima-
tion describes only the short time evolution of the system
[10,11].

The paper is organized as follows. The problem of colli-
sion in a simple KS flow is formulated in Sec. II. We present
the ILM of [8] in Sec. III, its numerical implementation, as
well as some limitations of the method. In Sec. IV, we dis-
cuss the results from the direct calculations of the collision
rates. We also explain how to separate the collisions from
“sling events” from collisions originating from pairs of par-
ticles moving close to each other, thus allowing us to mea-
sure separately the continuous and the sling contributions to
the collision rate. This is one of the main results of this work,
which leads to very precise tests of the ILM. Section V is
devoted to the comparison between the direct method and the
ILM. One of the main achievements of this work is to check
that the parametrization of the sling contribution is correctly
captured with the help of the ideas originally proposed in [8],
at least in the case of moderate Stokes numbers St=1.
Lastly, our conclusions are presented in Sec. VI.

II. NUMERICAL SETUP OF THE PROBLEM
A. Kinematic simulations

In order to be able to carry out very long simulations at a
reasonable numerical cost, we chose to describe the flow as
the superposition of a finite number of random Fourier
modes, rather than solving the full Navier-Stokes equations.
This synthetic method, known as “kinematic simulations”
[12], has been used in many dispersion problems and allows
one to generate a highly turbulent flow at a very low numeri-
cal cost [13-16]. In this formulation the velocity field of the
fluid is written as

N
u(x,/)= 2 A, cos(k, - X+ w,?) + B, sin(k, - X + w,1),

n=1

(4)

where N, is the total number of Fourier modes. The orienta-

tion 12,1 of the wave vectors kn=kn12n are randomly chosen.
The wave numbers are distributed between the large (inte-
gral) scale L and the small (Kolmogorov) scale 7 as

L\ (= D/N=1)
kn =k 1\ . (5)
n
The lowest and highest wave numbers in the spectrum are
chosen as
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The modes are uncorrelated: the orientations and the am-
plitudes A, and B, are chosen at random, perpendicular to
the wave vector k,, to ensure incompressibility,

A, k,=B,-k,=0. (7)
The norms of A, and B,, are chosen according to
A= B = E(k,) Ak, (8)
where
(ky — k)12, n=1
Ak, =1 (ke = k)2, 1€ [2,N;— 1] 9)

(ky,—kn,1)/2, n=N,

and E(k,) represents the energy spectrum, which we choose
here to have the classical Kolmogorov form: E(kn)zEOkf/ 3,
In all our simulations, we took Ey=1.

We worked in a cubic numerical box (27)3, so the com-
ponents of the k,, vectors must be chosen as integer values in
order to fix periodic boundary conditions for the velocity
field u. To implement the periodic boundary conditions, the
vectors k, were determined by first specifying a vector with
a random direction, and a norm given by Eq. (5), and then by
finding the closest vector with integer coordinates.

Finally, the frequencies w, in Eq. (4) are taken to be pro-
portional to the eddy turnover time of the mode n,

w, = MWEE(k,), (10)

where A is a dimensionless parameter often referred to as the
“persistence” parameter. The higher A the faster the velocity
field decorrelates. A realistic value of \ is a priori of order 1.
It has been noticed in previous studies [13,14] that this pa-
rameter quantitatively affects the results. Our simulations
have been performed for two values of \: A=0.5 and 2.0, for
a fixed value of the scale ratio L/ n=64 with eight modes in
each band of wave numbers [k,2k].

B. Particle dynamics

Droplets before the initiation of the coalescence process
are known to be much smaller than the Kolmogorov scale:
typically, 7/a=100. For particles of such a small size, and
for a very dilute system, it is appropriate to use the Maxey-
Riley system of equations [17]. The evolutions of the posi-
tion, x(7), and of the velocity, v(z), of a particle (droplet) are
described by the following differential equations:

dx

=v, 11
dtV (1)

av u(x)-v
d[ B Tp

+g. (12)

In this description, an inertial particle is characterized by its
dynamical time 7p. The Stokes number is the relevant dimen-
sionless parameter comparing the particle inertia with the
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Kolmogorov time: St=17p/ 7. The diameter a of the particle
and the Stokes number are related by #/a=W St™!/?
(W="7.45 for water droplets in the air).

Due to the periodic boundary conditions in the system,
particles exiting the system through one face of the period-
icity box are automatically reinjected in the system through
the opposite face. This does not cause any serious problem,
except in the presence of a strong gravity, when the time a
particle needs to settle down the system becomes comparable
to or smaller than the eddy turnover time.

The equation of evolution in the Lagrangian frame of the
gradient tensor & of the particle velocity v(o;;=d;v;) can be
readily deduced from Eq. (12),

do:. hi'_ ”
a0ij — _ii - 00y, (13)
dt Tp

where h;; is the velocity derivative tensor corresponding to
the fluid velocity u at the point of the particle: /;;=d;u;. The
nonlinear term in Eq. (13) controls the dynamics when |0
>1/7p, potentially leading to a divergence in a finite time
for |o|. Physically, this could happen when a particle en-
counters a very strong gradient (for example, a strong vor-
tex), so that the source term in Eq. (13) becomes large
enough (Jh|=1/7p) during a time of order 7p, thus making
the nonlinear term in Eq. (13) prevail.

III. ILM
A. Formulation

We use here the Lagrangian method proposed in [8] to
estimate the collision rate and compare it with direct mea-
surements. The continuous and sling contributions to the col-
lision frequencies are estimated separately as follows. The
continuous contribution is directly evaluated from a La-
grangian measurement of the gradient velocity tensor,

noa’ [ 1 r
Kepy=—"7"\ = n(
cont 2 TJ;) () PP

(f-o- f')det>, (14)

where ny=N,/V is the mean particle concentration in the
total volume V. This approach is similar to the Saffman-
Turner (ST) one. The angular brackets denote an average
over many trajectories. The upper limit of the integral in Eq.
(14) T corresponds to the time needed for the contraction rate
along a trajectory to grow by a factor (7/a). The value of
n(t) is computed by integrating the continuity equation,

— =—Nnoy;. (15)

Equations (14) and (15) can be justified by using the fact that
the concentration averaged (“coarse grained”) around the
center of a given particle has built up from an earlier instant
of time, where it was smooth at a scale ~#. The generation
of small scales results from the compression along the direc-
tions, corresponding to negative eigenvalues of the symmet-
ric part of o. In practice, we follow the evolution of the
inverse deformation tensor W, which describes how a line
element is transported by the flow: 8(r)=W(r)- 81(0). More
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precisely, we keep track of W~! by integrating

dwW!
dt

=-W'l. o (16)

As time evolves, the norm of the matrix |[W~!| increases,
which gives a quantitative measure of the small scales gen-
erated by the flow. Equation (15) indicates that concentration
increases due to the compression of the velocity gradient
tensor . At a certain time 7, the value |W~!(T)| reached
(7m/a) indicating that an initially smooth concentration at
scale 7 at r=0 has given rise to fluctuations down to the scale
a at time 7. This method has been used in [6,8] for describ-
ing the phenomenon of preferential concentration. In addi-
tion, we simply argue that the collisions affecting the particle
result from the flux of particles during the time where small
scales are generated, as indicated by Eq. (14) [8].

We use a phenomenological approach to estimate the
sling contribution to the collision rate. A sling event is char-
acterized by the fact that two particles can run into each
other with a velocity difference of order 1, even when the
separation between the two particles reaches zero. In a con-
tinuous description of the velocity field of the particles v, this
means that v becomes multivalued: the particle velocities
have more than one value at a given point. For this reason,
the evaluation of the sling contribution is intrinsically diffi-
cult. The appearance of regions in the flow where the veloc-
ity of the particles is multivalued is preceded by a singularity
in a finite time for o and a divergence of the concentration
n(t). However, because of their finite size, two particles can-
not be arbitrarily close to one another, so the concentration
cannot really diverge. For this reason, |@| cannot grow more
than a factor ~(7/a). The number of collisions N, that
occur in the wake of sling events can only be parametrized
and the parametrization compared to explicit DNS results.

Here, we simply estimate N, as the mean flux of par-
ticles during a time of the order of the particle relaxation
time 7p,

Nvlg = 47Ta2n(thu - TP)|Wilg|TP' (17)

In the equation above, n(t,,— 7p) corresponds to the density
taken at a time 7p shortly before the blowup of the velocity
gradient ¢ This is only an estimate of the density during the
entire collision process. Another difficulty in this approach
(see also [8]) is to provide a realistic estimate of the velocity
difference |w*'¢|. We will demonstrate how to properly iden-
tify the collisions induced by the sling events and how to
estimate <|w‘;[g |) later (see Sec. IV). The sling contribution to
the collision rate is then simply obtained by

Krlg = %n(lfbu-/\/'slg ’ (1 8)

where f,, is the blowup frequency defined as the average
number of blowups occurring along a trajectory per unit
time.

B. Numerical implementation

Our ILM requires the integration of several quantities
along the trajectories of the particles such as v(z), o (1), n(z),
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and W(t). Integration of Egs. (11)—(13) does not require any
interpolation technique since the velocity and the velocity
gradient of the fluid are given analytically by KS. The evo-
lution equations are solved by a Runge-Kutta numerical
scheme of order 2. We checked explicitly in a few cases that
the results do not change when using higher-order schemes.

As already mentioned, the gradient tensor ¢ can become
singular in a finite time. In order to be able to integrate the
equation past the time when o becomes singular, we need to
regularize the problem close to the divergence. Physically,
|| — o implies that particles may become arbitrarily close
in a finite time, which is not possible, due to the finite size of
the particles. Thus, |@| cannot grow by more than a factor
~n/a. Numerically, we regularize o by flipping the sign of
all its component when |o|> T;l nla [8].

Gravity is introduced via the dimensionless parameter ¢,
=St Fr. This quantity measures the relative importance be-
tween the acceleration uy/ 7 and the acceleration of gravity;
it does not depend on the particle size. Our results are pre-
sented for two values of this parameter, €=5.0 and 1.0,
which correspond, respectively, to weak and strong gravity.

C. Limitations about the method

While checking the ILM, we have identified two main
artifacts, leading to systematic errors in the determination of
the collision rates. The first problem is related to the arbi-
trariness in the choice of the initial velocity gradient when
solving Eq. (13). Too strong a gravity, in the presence of
periodic boundary conditions, also leads to incorrect esti-
mates, as we now explain.

The ILM requires not only the position and velocity of the
particles at initial time, but also of the velocity derivative o,
needed to determine the evolution of W. The particle posi-
tions are initialized randomly distributed, and the velocity of
the particles are chosen at =0 to be equal to the fluid veloc-
ity: v(r=0)=u(x,7=0). As an initial for o(0), we chose in
most calculations ¢(0)=h(x,7=0). To estimate the influence
of this choice, we compared with the results obtained by
choosing ¢(0)=0. Not surprisingly, we found that the differ-
ence between the values of o(f) corresponding to the two
different initial conditions decays exponentially, with a char-
acteristic time of the order of 7p. In practice, after a time of
order 67p, the two solutions are indistinguishable. This im-
plies that provided the time 7 needed to generate scales ~a
from scales ~# is much larger than the characteristic time
scale 7,, defined by 7,=67p, the estimate given by Eq. (14)
does not depend on the transient regime. On the other hand,
when T becomes comparable to, or smaller than ¢,, the inte-
gral in Eq. (14) becomes dominated by transient effects, so
the results strongly depend on the choice of ¢(0).

The values of the mean value of the time 7 needed to
generate a compression of (7/a) divided by ¢, is shown in
Fig. 1. Remarkably, the ratio 7/t, seems to be essentially
independent of the persistence parameter A. The ratio 7/¢, is
a decreasing function of St; it is equal to 1 for St=2. Based
on the results of Fig. 1, we consider that the transient effects
cannot be neglected for Stokes numbers larger than St~ 1.
This provides a strict bound on the domain of validity of the
ILM proposed in [8].
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FIG. 1. Ratio between the time needed to contract a line element
by a factor 7/a, T, and the typical time correlation of @, t,~67p.
At Stokes numbers larger than =1, the time 7 becomes comparable
to t,, pointing to a failure of the ILM. The gravity here is weak
(€9=5).

In a periodic domain, the effect of gravity is to introduce
a drift in the direction of gravity with velocity g X 7p. With a
box size of 247, it takes a time of order t,=2m/g7p for a
particle to settle through the entire size of the system and to
be reinjected in the box. Our simulations make sense only if
the time ¢, is large compared the decorrelation time of the
velocity field u, 7,~ 1/ w;, where w; is the pulsation corre-
sponding to the largest mode. At a given value of ¢, this
constraint sets an upper value for St. For St=3, all the re-
sults shown here are such that #,/¢,>1.

IV. DIRECT MEASUREMENTS
A. Numerical considerations

We considered the simplest case of independent monosize
particles allowed to pass through each other during colli-
sions, also known as ghost particles. We used a neighbor-
hood search algorithm to detect the colliding particles, as
introduced in [3]. Simulations have been performed over a
range of Stokes numbers between 0.1 and 3 and for two
different intensities of the gravity, €,=5.0 (weak) and ¢,
=1.0 (strong). The particle volume fraction, ®=n(7/6)a>,
has been maintained constant and very small, ®=1.2
X 1074, which implies that collisions involving three par-
ticles or more can be neglected. This situation is certainly
appropriate in the cloud context.

102
— St=04
......... St=0.8
10"} St=1.5
St=3.0

FIG. 2. PDF of the ratio between the radial relative velocity
estimated by rX 7-&-7 and the real one w,, measured at the time
step preceding the contact. The parameters are A=0.5 and €,=5.0.
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FIG. 3. Mean radial relative velocity conditioned on the sling

events. This quantity behaves as St'’? and is independent of gravity

at small values of St. The persistence parameter used here is A\
=0.5.

Technically, the equations of motion have been integrated
over a time long enough to observe a large number (~10°) of
collisions. We impose a fixed volume fraction, and since the
Stokes number is proportional to the square of the particles
radius, the number of particles depends on the Stokes num-
ber. We took here N,=10° St™2 As a result, the time of
integration necessary to obtain a given number of collisions
depends on St (in St¥? for the Saffman-Turner case). Several
runs were carried out with the same parameters, but with
different sets of Fourier modes, so as to improve the statistics
and to get an estimate of our error bars. All the measure-
ments of the collision rate presented in this paper have been
averaged over four numerical experiments.

The collision rates measured in this study are generally
referred to as “geometric” because no explicit mention is
made of the collision efficiency. In addition to the equations
of motion (11) and (12) we also follow the evolution of the
velocity gradient of each particle by integrating Eq. (13). As
explained below, this allows us to identify the sling events.

B. Separating the continuous and the sling components

For a continuous collision, the radial relative velocity at
contact between the two particles should be given by w,=a
X 7-o-7. In order to distinguish the continuous component
from the sling one, we compare for each collision the real
velocity difference and the quantity r X 7- & -7, computed at
the time step right before the collision. In the above expres-
sion, &=(0|+0%)/2, where o, and o, are the values of o
measured at the positions of particles 1 and 2. The probabil-
ity distribution function (PDF) of the ratio of these two quan-
tities is shown in Fig. 2. One can see clearly in this figure a
quite narrow peak at r X 7- &-7/w,=1. This peak corresponds
to the continuous contribution to the collision rate. In this
case, the radial relative velocity can be evaluated from the
gradient velocity tensor. As the Stokes number decreases, the
peak around 1 becomes weaker, and a much broader peak
develops around rXF7-&-7/w,=0 (see Fig. 2). The latter
peak corresponds to velocity differences between colliding
particles much larger than the value expected based on the
velocity gradient & and is thus attributed to the sling colli-
sions. In order to evaluate the two separate contributions to
the collision rate, we simply distinguish the nature of the
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FIG. 4. Direct measurements of the total collision rate K normalized by the Saffman-Turner collision rate K¢y for two different values of
the time correlation of the fluid: (a) A=0.5 and (b) N=2.0. Increasing gravity or decreasing the time correlations tends to decrease the

collision rate.

collision according to the value of the ratio r X 7- & #/w,. We
thus use the following simple criterion: collisions satisfying
the criterion 1-6/2<rXr-o-7/w,<1+6/2 are considered
as contributing to the regular term, and otherwise to the sling
term. The choice of & is somewhat arbitrary. It should be
large enough, so at small value of the Stokes number, where
fp.=0, the sling contribution is effectively zero. We chose
6=0.15 and partially took into account the uncertainty intro-
duced by this choice by increasing the error bars by a factor
of 50% in Figs. 5—8 shown below.

This method thus allows us also to identify the velocity
statistics of the radial velocity between colliding particles
|w'8| during a sling event. Of particular interest to the ILM is
the mean value (|wflg ), which was found to be well approxi-
mated by a form (|wi¢|)~A St'? (see Fig. 3). This func-
tional form, obtained numerically at moderate values of the
Stokes number (St=<1), differs from the functional form de-
rived in [7] in the very large Stokes number limit. In this
case one rather finds a dependence like (jw*¢[)=A" St™!/2,

The qualitative behavior of the dependence of the velocity
<|wflg |) differs from the very phenomenological description
proposed in [8], which was effectively assuming that the
velocity difference (|w'¢|) was proportional to ~ /7y
X St™12 instead of St"/2. Interestingly, the results of [18,19]
suggest Av ~ 7},/2 when 7x << 7p, under the condition that 7, is
smaller than the correlation time at the largest scale, which
effectively implies a (|w*|) ~ 5/ 7 X St*'/> dependence. The
results of [18,19] thus provide a natural explanation of our
own observation.

2| €0 =5.0 measurements
: indirect estimation
&~
Q 15} i
Y €0 =10 { ]
<
S 1 % E
< %
0.5} 1
0 05 1 15 2 25 3
(@) St

V. NUMERICAL DETERMINATION OF
THE COLLISION RATES

The results of our direct measurements of the total colli-
sion rate are shown in Fig. 4. At very low gravity (&,=5.0)
the curves exhibit a behavior qualitatively very similar to the
one observed in the DNS of [3] in the absence of gravity. A
very strong growth of the collision rate is observed at small
values of the Stokes number, followed by a slow decrease
after reaching a maximum at about St=2. Figure 4 reveals
that small time correlations (large values of \) as well as
strong gravity (small values of ¢) tend to decrease the col-
lision frequency. This is consistent with the observation that
both effects independently reduce preferential concentration.
Indeed, gravity decreases clustering since it reduces the in-
teraction time between particles and the turbulent eddies
[20,21]. The effect of \ has been considered in [22]. It was
shown that, in two-dimensional KS flows, particles and ve-
locity stagnation points of the flow anticluster. The persis-
tence of the stagnation points diminishes when the value of A
increases, thus inhibiting the formation of clusters, therefore
diminishing the preferential concentration effect.

The comparison between the results obtained with the
ILM and the measurements for the continuous component of
the collision rate, obtained by directly counting the number
of collisions, is shown in Fig. 5. As expected from Fig. 1 and
from the resulting discussion, the ILM does not permit us to
evaluate the collision frequency for large Stokes; for this
reason we only show the results for St=0.8. From the direct

ol measurements
indirect estimation
g 15} €©=50
\ }
s t
MS Tt ep =1.0 } 1
05} i
0 05 1 15 2 25 3
(b) St

FIG. 5. Comparison between direct measurements and the calculations based on the ILM of the continuous contribution for two different
values of the time correlation of the fluid: (a) A=0.5 and (b) A=2.0. The results obtained by the indirect Lagrangian method are not shown

for St>0.8 because of the inconsistency of the method for large St.
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FIG. 6. Average blowup frequency f;,, normalized by the Kolmogorov time 7 for two different values of the time correlation of the fluid:
(a) N=0.5 and (b) A=2.0. Gravity reduces dramatically the probability for a particle to experience a sling event.

measurements we see that the continuous part of the collision
rate reaches a maximum around St~ 0.6—0.8, then decreases
and finally becomes smaller than the ST case. Looking at Eq.
(14), one can see that the growth of K,,,, can only be attrib-
uted to preferential concentration. Those results reflect that
the preferential concentration is largest for St~0.6—-0.8.

The effect of gravity is to reduce the intensity of this
phenomenon, so the values of K_,,,, are smaller for €y=1 than
for €y=5. For the continuous component, a smaller value of
the correlation time (increased value of \) also leads to a
reduction in the collision rate. This is also consistent with the
observation (see [22]) that preferential concentration is re-
duced at larger values of A.

Figure 6 shows the behavior of the blowup frequency
with respect to the Stokes number, a crucial quantity for the
determination of the sling component [Eq. (18)]. We found,
as in [8] that f;,, 7 could be well represented by an analytical
expression of the form f,,7x=exp(-A/St)St>(B+C StP).
The asymptotic behavior exp(—A/St) for Stokes going to
zero can be theoretically justified (see [23,24]). In more el-
ementary terms, it is a manifestation of the intrinsic lack of
analyticity of the problem since flipping the sign of the
Stokes number leads to a physically ill-defined problem [25].

Figure 6 implies that increasing the gravity significantly
reduces the blowup frequency. In fact, when the terminal
velocity (vy=gX 7p) becomes too large, particles fall
through the flow eddies and cannot be accelerated enough to
be shot out by the vortices.

In the range of parameters considered here, the effect of
the parameter A, which describes the persistence of the flow,

3.5

measurements
indirect estimation

eg = 5.0

0 02 04 06 08 1
(a) St

affects essentially the parameter A: A=3.1 for A=0.5 and
A =4, for N\=2. Thus, at higher values of \, the blowup
frequency is very much reduced. This is consistent with the
naive intuition based on Eq. (13) that a blowup of o requires
a large value of the fluid velocity gradient i for a long
enough time. Increasing \ is bound to decrease the probabil-
ity of such an event. In practice, for St<<0.2—0.3 the blowup
frequency is essentially zero.

The comparison between the results obtained with the
ILM, assuming a velocity difference behaving like (|w’¢|)
~ n/ 7 X St'2, and the measurements of the sling contribu-
tion to the collision rate is shown in Fig. 7. As it was the case
for the continuous contribution (see Fig. 5), the ILM does
not allow us to predict correctly the collision rate for values
higher than St= 1. The agreement between the two estimates
is somewhat better than what was found for the continuous
contribution. The direct measurements show a maximum of
the sling contribution in the range 1=St=2. With the value
for the velocity difference, the ILM does not capture this
maximum.

We note that the functional form proposed in [8] on phe-
nomenological grounds, (|wi$|)~ 7/ 7 X St™2, captures
much better the qualitative aspect of the sling contribution to
the collision curves, up to much larger values of the Stokes
number (see Fig. 8). The quality of the fit at values in the
range 0.4=<St=1 is not too sensitive to the power law used;
the difference is much more visible for St=1.

A qualitative justification may be provided by the theoret-
ical results of [7] suggesting a (|w''¢|)~ St~ behavior at
large values of St for a flow with a single scale. We note that

3

measurements
indirect estimation

25}

0 02 04 06 08 1
(b) St

FIG. 7. Comparison between direct measurements and the calculations based on the ILM of the sling contribution for two different values
of the time correlation of the fluid: (a) A=0.5 and (b) A=2.0. The results obtained by direct counting of the collision rates are correctly

captured by the ILM only up to St=1.
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FIG. 8. Modified description of the sling term. The sling contribution to the collision rate is much better captured by the form originally

proposed in [7,8], with a collision velocity between particles behaving like w''¢~A’ St-

12 and justified in the limit of very large Stokes

numbers. The calculations have been carried out with two different values of \: (a) A=0.5 and (b) A=2.

the prediction of [18,19] suggesting a St'? behavior for a
multiscale flow applies only when 7p satisfies T<<7p
<L/U, where L/U is the eddy turnover time (i.e., the corre-
lation of the velocity at large scale); hence, it does not apply
at too large value of 7p, consistent with the observation that
the (|w’'8]) ~ 9/ 7¢ X St'”? behavior is valid only up to a finite
value of the Stokes number (see Fig. 3). At large values of
7p, particles should be sensitive only to the largest eddies in
the flow, thus suggesting an explanation as to why the fit
shown in Fig. 8 is much better at St=1 than the one shown
in Fig. 7. We notice however that Fig. 3 does not clearly
support the (|[w8|) ~ 7/ 7 X St~/ behavior at very large val-
ues of St. This points to a weakness of our analysis and
suggests that further work is necessary to understand the
good agreement between the fit shown in Fig. 8 and the
numerical results.

VI. SUMMARY AND DISCUSSIONS

In this work, we have studied collisions occurring in a
monodisperse very dilute suspension of heavy particles in a
synthetic turbulent flow. The collision rates were estimated
both by directly counting how often two particle centers get
closer than a particle diameter a (direct method) and the
results have been compared systematically with the ILM,
proposed recently in [8].

One of the main objectives of the work was to investigate
the possibility to separate the contributions to the collision
term induced by the gradients of the turbulent flow (the
“regular contribution”) from the contribution induced during
sling events or caustics formation. By systematically moni-
toring the velocity difference between the particles during a
collision, and by comparing it with the time local gradient of
the particle flow, we have been able to clearly separate the
contribution due to the two effects. For modeling purposes,
we find that the mean velocity difference induced during the
sling events goes as (|w*’¢|) ~ St'’2. This result is at odd with
the phenomenological considerations in [8], which rather
postulated a dependence of the form (Jw*'s[) ~ St="/2,

The other objective was to compare the collision rates
determined by direct counting and by the ILM proposed in

[8]. The main result of this work is that the ILM provides
quantitatively very accurate results for a wide range of
Stokes numbers, as well as for a wide range of gravity
strength, as measured by the parameter €,. In the absence of
gravity, the ILM works only at limited Stokes numbers (St
=<1-2). Incorporating the effect of gravity provides addi-
tional constraints when the free fall velocity of the droplets
becomes too fast.

These results validate further the good qualitative agree-
ment found in Navier-Stokes flows between direct estimates
of collision rates at limited Reynolds numbers R, =50, in a
limited range of Stokes numbers (0.1 =St=0.4 [9,20]) for
the regular contribution of the collision rate, prevalent at
small Stokes numbers. It also sheds light on the systematic
difference between the sling contributions that can easily be
attributed to the incorrect parametrization of (|w*’¢). One of
the consequences of our work is that the calculations based
on the ILM cannot be trusted for Stokes numbers larger than
St=1.

Clearly identifying the physical mechanisms leading to an
enhancement of the collision rates between inertial particles
in turbulent flows is very significant, in view of the many
physical situations where collisions play a crucial role. The
sling effect, recently identified as one of the key mechanisms
in determining the collision rate between inertial particles
[6,7] is difficult to model from first principles. Our results
allow us to extract from a numerical study the important
features necessary to estimate the collision rate due to sling
events. With this ingredient, the ILM-based estimate of the
collision rate proposed in [8] leads to a quantitatively accu-
rate description of the collision rate in the range 0=St=< 1.
Although still incomplete, the understanding gained in this
work should help in providing a reliable parametrization of
the collision rate in the parameter range relevant to engineer-
ing or natural flow situations.
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